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Forecasting the progression of Alzheimer’s disease using neural
networks and a novel preprocessing algorithm
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Abstract Introduction: There is a 99.6% failure rate of clinical trials for drugs to treat Alzheimer’s disease,
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likely because Alzheimer’s disease (AD) patients cannot be easily identified at early stages. This
study investigated machine learning approaches to use clinical data to predict the progression of
AD in future years.
Methods: Data from 1737 patients were processed using the “All-Pairs” technique, a novel method-
ology created for this study involving the comparison of all possible pairs of temporal data points for
each patient. Machine learning models were trained on these processed data and evaluated using a
separate testing data set (110 patients).
Results: A neural network model was effective (mAUC 5 0.866) at predicting the progression of
AD, both in patients who were initially cognitively normal and in patients suffering from mild cogni-
tive impairment.
Discussion: Such a model could be used to identify patients at early stages of AD and who are there-
fore good candidates for clinical trials for AD therapeutics.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Machine learning; Neural networks; Disease progression; Alzheimer’s disease; Mild cognitive impairment; De-
mentia; Longitudinal studies
1. Introduction

Alzheimer’s disease (AD) is the most common neurode-
generative disease in older people [1,2]. AD takes a
significant toll on patients’ daily lives, causing a
progressive decline in their cognitive abilities, including
memory, language, behavior, and problem solving [3–6].
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Changes to AD patients’ cognitive abilities often start
slowly and become more rapid over time [7,8]. Doctors
and other caregivers monitor the progression of AD in
patients by evaluating the degree of decline in the patients’
cognitive abilities [9], which are often divided into 3 general
categories: cognitively normal (NL), mild cognitive impair-
ment (MCI), and dementia [5,10]. Patients with MCI and
dementia both suffer from reduced cognitive abilities, but
MCI has a less severe effect on everyday activities, and
patients suffering from dementia often have additional
symptoms such as trouble with reasoning or impaired
judgment [11,12].

Unfortunately, there is no cure for AD at this time, and
progress on identifying a cure has been slow [10]. None of
the five medications currently approved by the FDA to treat
AD have been shown to delay or halt its progression [9].
Instead, they only temporarily improve patients’ symptoms
[9,13,14]. And, the most recently approved medication is
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just the combination of two existing drugs for treating AD,
donepezil and memantine, which were approved by the
FDA 23 and 16 years ago, respectively [14]. Despite consid-
erable efforts to find a cure for AD, there is a 99.6% failure
rate of clinical trials for AD drugs [13,15]. In early 2018
alone, two groups ended their AD clinical trials because
their drugs failed to prevent the progression of AD
[16,17]. The difficulty in finding treatments for AD is most
likely a combination of uncertainty over the cause of AD
and the fact that AD patients cannot be easily identified at
early stages [10,13,18]. Even the FDA recognizes the
importance of identifying patients who are at risk of
developing AD but who do not have any noticeable
cognitive impairment [19]. For this reason, AD research
would benefit from the ability to use current medical data
to predict the mental state of patients in future years to iden-
tify patients who are good candidates for clinical trials
before they become symptomatic [2,10,13,20,21].

Several different types of data that are relevant to assess-
ing the mental state of AD patients and the progression of
AD in general have been identified. One of the largest ge-
netic risk factors for AD is the presence of 1 or 2 copies of
the ε4 allele of the APOE gene, which encodes a particular
variant of the enzyme Apolipoprotein E [5]. Physical
changes to the brain have also been shown to be correlated
with the progression of AD. For example, a decline in neuro-
genesis in the hippocampus is one of the earliest changes to
brain physiology seen in AD patients and is thought to un-
derlie cognitive impairments associated with AD [6]. The
progression of AD also accelerates the normal atrophy of
brain tissue caused by aging, as evidenced by increased
enlargement of the ventricles of the brain over time [22].
One study demonstrated a 4-fold difference in the rate of
Table 1

Features from the ADNI data set used to train the machine learning models

Variable Meaning

DX Earlier diagnosis

ADAS13 13-item Alzheimer’s Disease Assessment Scale

Ventricles Ventricular volume

AGE Age

FAQ Functional Activities Questionnaire

PTRACCAT Race

Hippocampus Hippocampal volume

APOE4 # of ε4 alleles of APOE

MMSE Mini-Mental State Examination

ADAS11 11-item Alzheimer’s Disease Assessment Scale

RAVLT_immed Rey Auditory Verbal Learning Test— total number of

memorized over 5 trials

RAVLT_learn Rey Auditory Verbal Learning Test— number of word

learned between trial 1 and trial 5

RAVLT_forg Rey Auditory Verbal Learning Test— number of word

forgotten between trial 5 and trial 6

RAVLT_perc_forg Rey Auditory Verbal Learning Test— percentage of w

forgotten between trial 5 and trial 6

N/A Time difference

Abbreviation: ADNI, Alzheimer’s Disease Neuroimaging Initiative.
ventricle enlargement in AD patients and normal controls
over a six-month interval [22]. Cognitive tests have also
been widely used for early detection of AD [8]. Several
commonly used tests, such as ADAS11 and ADAS13, are
based on the Alzheimer’s Disease Assessment Scale
(ADAS), which is a brief cognitive test battery that assesses
learning and memory, language production, language
comprehension, constructional praxis, ideational praxis,
and orientation [23,24]. ADAS11 scores range from 0 to
70, and ADAS13 scores range from 0 to 85, with higher
scores indicating more advanced stages of AD [24]. Similar
cognitive tests, such as the Mini–Mental State Examination
(MMSE), the Rey Auditory Verbal Learning Test (RAVLT),
and the Functional Activities Questionnaire (FAQ) have also
been used to assess the progression of AD in individual pa-
tients [25,26]. ADAS has been found to be more precise than
the MMSE [27], and the RAVLTonly addresses verbal recall
[28], thus providing less diagnostic information than either
of the other two. Similarly, the FAQ only assesses patients’
ability to perform certain tasks [29] and therefore is more
limited in scope than the MMSE and ADAS.

In recent years, machine learning techniques have been
applied to the diagnosis of AD patients with great success.
For example, Esmaeilzadeh et al. achieved an accuracy of
94.1% using 3D convolutional neural networks to diagnose
AD on a data set with 841 patients [30]. Similar results
were obtained by Long et al., who used a support vector ma-
chine to diagnose AD based on a magnetic resonance imag-
ing (MRI) scan data set (n 5 427 patients; mean best
accuracy 5 96.5%) [31] and Zhang et al., who used MRI
scans, FDG–positron emission tomography scans, and CSF
biomarkers to diagnose AD (n 5 202 patients; AD vs. NL
accuracy 5 93.2%, MCI vs. NL accuracy 5 76.4%) [32].
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However, the focus of these earlier studies was to use current
medical data to diagnose a patient’s present cognitive state,
in effect demonstrating that a computer can replicate a doc-
tor’s clinical decision-making. What is needed is a way to
use machine learning to predict future diagnoses of AD pa-
tients [10].
Fig. 1. Flowchart showing methodology for training and evaluating ma-

chine learning models.
2. Methods

2.1. Alzheimer’s Disease Neuroimaging Initiative data

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (https://adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led
by the principal investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
MRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and
early AD.

The ADNI study has been divided into several phases,
including ADNI-1, ADNI-GO, and ADNI-2, which started
in 2004, 2009, and 2011, respectively. ADNI-1 studied 800
patients, and each subsequent phase included a mixture of
new patients and patients from the prior phase who elected
to continue to participate in the study. The ADNI patient
data were preprocessed to flag missing entries and to convert
nonnumeric categories (such as race) into numeric data.
Data were sorted into three data sets (LB1, LB2, and LB4)
based on criteria established by The Alzheimer’s Disease
Prediction Of Longitudinal Evolution (TADPOLE) Chal-
lenge (https://tadpole.grand-challenge.org/) [10].

The LB2 and LB4 data sets consist of data from 110
patients who participated in ADNI-1, who continued to
participate in ADNI-GO/ADNI-2, and who were not
diagnosed with AD as of the last ADNI-1 time point.
Specifically, LB2 contains all observations of these pa-
tients from ADNI-1, and LB4 contains all observations
of these patients from ADNI-GO/ADNI-2. The LB1
data set consists of ADNI data for all remaining patients
(n 5 1737). Generally speaking, LB1 was used as a
training and validation data set, whereas LB2 and LB4
were later used to test the ability of machine learning
models to predict the progression of AD on an indepen-
dent patient population.

2.2. All-pairs technique

Data from LB1 were then further processed using a novel
methodology developed for this project called the all-pairs
technique, which can be summarized as follows: Let R be
the number of patients in the data set and B be the number
of biomarkers (or other clinical data) being evaluated as fea-
tures. For each patient Pi (1� i� R), the ADNI database in-
cludes Li separate examinations by a physician. Then, Ei,j,
the jth examination of the ith patient, can be defined as a
multidimensional vector as follows:

Ei;j 5
�
di;j; bi;j;1; bi;j;2;.; bi;j;B; ci;j

�

where di,j is the date of the examination, bi,j,k (1� k� B) are
different biomarkers (or other clinical data), and ci,j is the
clinical state of the patient (normal, MCI, or dementia) as
measured during that examination. The all-pairs technique
transforms these examination data to generate a feature array
X and target array Y that are used to train the machine
learning models. Specifically, for every i,ja,jb, where
1� i� R and 1� ja,jb� Li, a row of X and a corresponding
cell of Y are calculated:

https://adni.loni.usc.edu
https://tadpole.grand-challenge.org/


Fig. 2. Performance of various machine learning models. (A) Box-and-whisker plots showing performance of models on 100 random splits of 1737-patient

training data set (LB1). (B) Performance of models on 110-patient testing data set (LB2/LB4) (scores from 5 iterations plus average score).

J. Albright / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5 (2019) 483-491486
Xrow 5
�
di;jb � di;ja ; bi;ja;1; bi;ja;2; :::; bi;ja;B; ci;ja

�

Ycell 5 ci;jb

This approach can be extended from pairs of examina-
tions (ja,jb) to triplets (ja,jb,jc) as follows:

Xrow 5
�
di;jc � di;jb ; di;jb � di;ja ; bi;jb;1;.; bi;jb;B;

ci;jb ; bi;ja;1;.; bi;ja;B; ci;ja
�

Ycell 5 ci;jc

Individual rows and cells are then assembled to
create the X and Y arrays that are used for training of
the machine learning model as well as cross-validation
studies.

2.3. Evaluation using LB2 and LB4 data sets

In the case of LB2, each examination can be character-
ized by the same vector Ei,j as used for the LB1 data set.



Fig. 3. (A) Confusionmatrix comparing diagnoses predicted by the best-performing neural network with actual diagnoses. (B) Receiver operating characteristic

curves based on output of best-performing neural network. Abbreviations: MCI, mild cognitive impairment; NL, cognitively normal.
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However, because the LB2 data are only used to test the
machine learning models and not for training, no compar-
ison between examinations is performed. Instead, Ei,j is
transformed into the input vector by replacing the di,j
term with a time variable that represents the number of
months into the future that the machine learning model
should make a prediction. Specifically, for each patient
Pi in LB2, the machine learning algorithm is applied to
a series of input vectors of the form:

�
t; bi;j;1; bi;j;2;.; bi;j;B; ci;j

�

where t is the time variable. Input vectors are generated
based on each patient’s last three examinations in LB2, or
for all the examinations if the patient has less than three.
The probabilities calculated by the machine learning algo-
rithm based on these examinations are averaged to generate
predicted probabilities for patient Pi at time t. When
comparing the model’s predictions against the actual diag-
noses in LB4, t is set to the time difference between the
applicable examination in LB2 and the applicable examina-
tion in LB4. For the time courses shown in Figs. 4 and 5, t is
set to an integer between 1 and 84, inclusive.
2.4. Features

The features analyzed by the machine learning
models consisted of 13 biomarkers or other types of
clinical data present in the ADNI data set, all of which
have been cited in published papers as correlating with
AD progression. These 13 features are summarized in
Table 1 and include genetic biomarkers (APOE4), phys-
ical biomarkers (ventricular volume/ICV ratio, hippo-
campal volume), the results of behavioral tests
(ADAS13 and ADAS11 scores, FAQ score, MMSE
score, and 4 types of RAVLT scores), and basic demo-
graphic information (age and race). As described previ-
ously, two additional features that were generated during
preprocessing of the data using the all-pairs technique
were also included in the models, namely the clinical
diagnosis at the earlier of two examinations and the
time difference between examinations.
3. Results

3.1. Model performance

A flowchart summarizing the overall methodology for
training and evaluating the machine learning models is
shown in Fig. 1. Various machine-learning classifiers,
including support vector machines, logistic regression,
gradient boosting classifiers, random forests, multilayer per-
ceptron neural networks, and recurrent neural networks,
were implemented using the Python libraries Scikit-learn
and Keras (backed by TensorFlow). Each classifier was
then evaluated on the processed data derived from LB1 using
7-fold cross-validation.

The effectiveness of each classifier was measured using a
specialized version of a receiver operating characteristic
area under the curve (ROC-AUC) score for multiclass clas-
sification (“mAUC score”), as previously described by Hand
and Till [33]. The ROC-AUC score is a balanced metric for
classifiers that considers both the true-positive rate (percent-
age of actual positives that are called correctly) and the false-
positive rate (percentage of actual negatives that are called
incorrectly). The mAUC variant of this score takes all or-
dered pairs of categories (i, j), measures the probability
that a randomly selected element from category i would
have a higher estimated chance of being classified as cate-
gory i than a randomly selected element from category j,
and averages all these probabilities. A classifier that works
perfectly would have an mAUC score of 1; a classifier that
guessed randomly would result in an mAUC score of 0.5.

In the end, two classifiers, a multilayer perceptron imple-
mented in Scikit-learn (“MLP”) and a recurrent neural
network implemented in Keras (“RNN”) were found to
have the best performance in the cross-validation studies.
Both these classifiers are types of neural networks. An
MLP consists of a layer of input nodes, a layer of output no-
des, and one or more hidden layers between the input and
output layers. Each input vector is fed into the input nodes,
and the value of each node in every other layer is dependent
on the values of the nodes in the previous layer. Like anMLP,
an RNN consists of multiple nodes organized into layers, but
the outputs of some of the hidden layers are fed back into the
same layer so that earlier input vectors can influence the



Fig. 4. Month-by-month predicted diagnoses for all 110 patients in LB2/

LB4 data set over 7 years.
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outputs for later input vectors. This allows the RNN to
“remember” earlier inputs, which has been shown to be
particularly useful when analyzing data consisting of multi-
ple observations taken at different time points [34,35].

To further investigate theMLP and the RNN and see if the
performance of the MLP and RNN could be further
improved by optimizing the training protocol, six variants
of each of the neural networks were generated to examine
the effects of changing the number of features being exam-
ined (8, 11, and 15) and whether the all-pairs technique
was applied to pairs of patients’ doctors’ visits or triplets
of visits. Table 1 details which features were included in
the 8-, 11-, and 15-feature training groups. The columns in
Table 1 labeled “Variable” and “Meaning” provide the
name of each feature as it appears in the ADNI data set as
well as the corresponding description for each feature,
respectively.

Each of the 12 models were trained and tested on LB1-
derived data using 7-fold cross-validation. The best perform-
ing model was the MLP trained on 8 features and triplets of
time points, which achieved an mAUC score of 0.9631.
However, the differences among the mAUC scores for all
the models were quite small and in many cases well within
1 standard deviation (SD), suggesting that some of the vari-
ability between the scores might be due to random chance
rather than actual differences in predictive performance. In
addition, because the training and testing of neural networks,
as well as the cross-validation process, relies to some extent
on algorithms that use random numbers, the scores will
change slightly each time that the models are subjected to
cross-validation. Consequently, a single set of cross-
validation results may not provide a conclusive answer.

To assess the performance of these models in a more
rigorous manner, each of the 12 models was also evaluated
on a series of random splits of the preprocessed LB1 data
set. For each model, the preprocessed LB1 data set was
randomly separated into a training data set and testing data
set using a 70:30 ratio, and this was repeated to create 100
pairs of training and testing data sets that were then used
to train and test the model. The use of a large number of
randomly generated splits produces a distribution of
mAUC scores that better reflect the overall performance of
the model and minimizes the effects of outliers. The results
are shown as box-and-whisker plots in Fig. 2. Using this
more rigorous approach, the model with the highest average
mAUC score was an MLP trained on data with 15 features
and with triplets of patients’ examinations, which had an
average mAUC score of 0.967 and a standard deviation of
0.0016. This model is highlighted in blue in Fig. 2.
3.2. Prediction of Alzheimer’s disease progression

To assess real-world performance, select models were
also trained on the entire LB1 data set (after processing
with the all-pairs technique) and then evaluated on data
derived from LB2 and compared to actual diagnoses in
LB4, asking whether early biomarkers and other early clin-
ical data for the 110 patients in LB2 can predict their later
diagnoses. The actual examination dates in LB4 vary from
patient to patient, but they generally cover the 7-year period
of ADNI-GO/ADNI-2. LB4 contains a total of 417 examina-
tions, or an average of 3.79 examinations per patient. As in
the cross-validation studies, the performance of each model
was assessed based on mAUC scores. Out of the 12 previ-
ously discussed models, the 4 models that used 15 features
were selected for testing against LB2/LB4, namely



Fig. 5. Predicted likelihood of normal, MCI, and dementia diagnoses for 50 random patients in LB2/LB4 data set over 7 years. Abbreviation: MCI, mild cogni-

tive impairment.
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1. MLP trained using pairs of examinations,
2. MLP trained using triplets of examinations,
3. RNN trained using pairs of examinations, and
4. RNN trained using triplets of examinations.

Hyper-parameter optimization was conducted for each of
these models, and each model was tested 5 times for each set
of parameters to minimize the impact of random variation
inherent in the neural network training process. In total, 27
different sets of parameters were tested for each model, con-
sisting of 3 possible values for the alpha parameter, 3
possible values for the learning rate, and 3 possible values
for the size of the hidden layers. Fig. 2 shows the results
from the highest performing version of each of the 4 models
listed previously.

The model and parameters with the best average mAUC
score was the MLP trained on 15 features using pairs of ex-
aminations, which achieved an average score of 0.866 on the
110-patient test data set. This model is shown with a blue
box in Fig. 2. This result represents an improvement over
previously published work using the ADNI data set. In
particular, Moore et al. [8] achieved an mAUC score of
0.82 with a random forest classifier; Ghazi et al. [34]
achieved an mAUC score of 0.7596 with an RNN;
and Nguyen et al. [35] achieved an average mAUC score
of 0.86 with an RNN together with forward-filling data
imputation.
Fig. 3 depicts a confusion matrix for this best performing
model, which provides a visual indication of howwell the di-
agnoses predicted by the model line up with the actual diag-
noses. The confusion matrix reveals two types of mistakes
occasionally made by the machine learning model: predict-
ing a cognitively normal diagnosis when a patient is actually
diagnosed with MCI and predicting an MCI diagnosis when
a patient is actually diagnosed with dementia. These mis-
takes may both simply be the result of a small error in how
the time variable is applied by the algorithm, which creates
a lag in the diagnosis predictions.

Fig. 3 also shows a group of receiver operating character-
istic (ROC) curves based on the output of the best perform-
ing model, which measure how well the model can separate
two groups: patients with a particular diagnosis and patients
with one of the other diagnoses. Interestingly, the ROC score
for the MCI class is lower than the other two ROC scores,
suggesting that the model is having more difficulty sepa-
rating patients with MCI from the other two groups. Based
on these individual ROC scores, the model’s average
mAUC score (0.866) could be dramatically increased if the
model’s ability to separate MCI patients from non-MCI pa-
tients was improved.

The best performing model was also used to predict the
future diagnosis of normal, MCI, or dementia for all 110 pa-
tients in the LB2/LB4 data sets on a month-to-month basis
over an 84-month (7-year) period, as shown in Fig. 4. The
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model predicted that some patients would remain normal
over the entire 7-year period, while others would progress
from normal to MCI to dementia.

Time courses were also generated for a random subset of
these patients (n 5 50) showing how the likelihood of
normal, MCI, or dementia diagnoses is forecasted to vary
over the 84 months, as shown in Fig. 5. The color of each
curve (green, yellow, or red) indicates the most severe diag-
nosis actually received by the patient (normal, MCI, or de-
mentia, respectively) during the 7-year period. As can be
seen in Fig. 5, patients who remained normal over the entire
84-month period generally received very low predicted
probabilities of MCI or dementia diagnoses from the model.
Similarly, patients who were diagnosed with dementia at
some point during this period generally received high pre-
dicted probabilities of dementia from the model.
4. Discussion

Previous work published by others has shown that ma-
chine learning algorithms can accurately classify a patient’s
current cognitive state (normal, MCI, or dementia) using
contemporaneous clinical data [30–32]. This project has
extended this previous work by looking at how past and
present clinical data can be used to predict a patient’s
future cognitive state and by developing machine learning
models that can correlate clinical data obtained from
patients at one time point with the progression of AD in
the future. Several of the machine-learning models used in
this project were effective at predicting the progression of
AD, both in cognitively normal patients and patients
suffering from MCI. In addition, a novel all-pairs technique
was developed to compare all possible pairs of temporal data
points for each patient to generate the training data set. By
comparing data points at different points in time, the all-
pairs technique adds time as a variable and therefore does
not require fixed time intervals, which are unlikely to occur
in “real-life” data [36]. These techniques could be used to
identify patients having high AD risk before they are diag-
nosed with MCI or dementia and who would therefore
make good candidates for clinical trials for AD therapeutics.
Because the inability to identify AD patients at early stages
is believed to be one of the primary reasons for the frequent
failure of AD clinical trials, these techniques may help in-
crease the chances of finding a treatment for AD.
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RESEARCH IN CONTEXT

1. Systematic review: Literature on machine learning
techniques for the prediction or the diagnosis of Alz-
heimer’s disease (AD) was reviewed, including those
that also used the Alzheimer’s Disease Neuroimag-
ing Initiative data set as a source of AD patient data.

2. Interpretation: This work suggests that machine
learning models, such as the neural networks used
in this paper, can be used to make accurate predic-
tions of the future clinical state of AD patients.
This paper introduced a novel preprocessing algo-
rithm (the all-pairs technique) that facilitates the
effective training of such models.

3. Further directions: To further ascertain the ability of
the machine learningmodel described in this paper to
make accurate assessments of AD patients, future
work may include evaluation of the model’s perfor-
mance on other data sets besides the Alzheimer’s
Disease Neuroimaging Initiative data set, and the
model’s performance using different biomarkers
than those chosen for this paper.
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